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Abstract

OpenOSPFD is a free and secure implementation of the
Open Shortest Path First protocol. It allows ordinary
machines to be used as routers exchanging and calcu-
lating routes within an OSPF cloud.

OpenOSPFD is the next major step after OpenBGPD for
full router capabilities in OpenBSD and other BSDs.
Together with OpenBGPD it is possible to re-route traf-
fic in case of link loss resulting in a higher-level of avail-
ability.
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Overview

1.1 Routing Protocols
The Internet is split into regions called Autonomous Sys-
tems (AS). Each AS is under the control of a single
administrative entity – for example a university or an
ISP. The edge routers of these AS use an Exterior Gate-
way Protocol (EGP) to exchange routing information
between AS. Currently BGP4, the Border Gateway Pro-
tocol is the only EGP in widespread use. Routers within
an AS use an Interior Gateway Protocol to exchange
routing information. There are different IGPs. OSPF,
IS-IS, and RIP are the most commonly used. It is possi-
ble and common to have multiple IGPs running inside
one AS.
The Routing Information Protocol (RIP) is a legacy pro-
tocol that is often found on appliances. It is not suitable
for larger networks because the distance vector algo-
rithm used by RIP converges slowly. Especially in the
face of certain network failures (count to infinity). OSPF
and IS-IS on the other hand are both link-state protocols.
The Intermediate System to Intermediate System (IS-IS)
protocol was developed for the OSI protocol suite under
the lead of the ITU.

Why not use one protocol for everything, EGP and IGP?
The requirements for an IGP differ from those of a an
EGP. For an IGP it is important to recalculate the routing
table quickly when the network changes. Another factor
is automatic neighbor discovery. On the other hand the
most important feature of an EGP is the ability to
express routing policies. The resulting routing table is
normally cost optimised.

1.2 Algorithms
There are two main concepts to exchange routing infor-
mation. These algorithms are working in a totally differ-
ent ways.

1.2.1 Distance Vector Algorithms

Distance vector algorithms got their name from the form
of the routing updates: a vector of metrics. 
In a distance vector algorithm every router exchanges its
routing table with all his neighbors. The neighbors then
walk through the list and compare if their current route
entry is better or not. If not the route is replaced and
redistributed again.
In case of RIP the list of routes and their metric is
exchanged every 30 seconds. This results in a slow con-
vergence because an update propagates only one hop
every 30 seconds. On the other hand the protocol is
simple and robust because every router cares only about
his own neighbors. In other words the information about
the network topology is distributed. This results in one of
the biggest weaknesses of RIP – the count to infinity
problem – resulting in slow convergence and routing
loops if a network becomes unavailable. There are some
countermeasures against this. The simplest is to pass the
full routing path instead of only the metric. This path
distance vector algorithm is used by BGP. It is easy to
implement routing policies on distance vector algo-
rithms.

1.2.2 Link-State Algorithms

In a link-state protocol every router or node sends out his
current link-states. The link-state advertisements are dis-
tributed to all nodes in the network. The resulting repli-
cated distributed database represents the entire network
topology. Every node uses this connectivity map to cal-
culate the shortest path to every other router. Link-state
protocols have good convergence properties. The biggest
weakness of link-state protocols is the replicated distrib-
uted database. If the database gets out of sync non opti-
mal routes are used and in worst case routing loops are
created. Link-state protocols are more complicated than
distance vector protocols.

OSPF – the protocol

The OSPF routing protocol was developed within the
IETF. The work started in 1987. The current version
(OSPFv2) of the specification was published in 1998 as
RFC 2328.

Figure 1: Sample OSPF network
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2.1 Architecture
The Open Shortest Path First (OSPF) protocol is a link-
state, hierarchical routing protocol. It is probably the
most used IGP in the world. It is capable of doing neigh-
bor discovery on different types of networks with mini-
mal need for configuration. OSPF encapsulates its
routing messages directly on top of IP as its own proto-
col type (89). TCP connections are not used because the
link-state flooding algorithm already includes its own
way for reliable communications – adding to OSPF's
complexity. Most obvious the massive use of IP multi-
cast in OSPF makes TCP infeasible.

2.1.1 Networks

An OSPF router discovers neighbors by periodically
sending OSPF Hello packets out on all configured inter-
faces. Depending of the interface type different methods
are used. The flooding algorithm depends on the inter-
face type as well.
The simplest interface type is a point-to-point interface.
Neighbor discovery is easy – there is only one neighbor
on the other side of the link – and no special link-state
flooding enhancement is required.
For ethernet and other broadcast networks OSPF uses
multicast to find all neighbors on the segment. The link-
state updates are flooded via multicast as well. To make
the thing even more complicated a designated router
(DR) was introduced. The DR has the duty to enforce the
reliable flooding for all other routers connected to the
same LAN. A backup designated router (BDR) was
introduced to take over in case of a DR failure.

Additionally more flooding procedures where defined
for other important network types like NBMA (non-
broadcast multiple-access) or point-to-multipoint net-
works. Examples include X.25, Frame Relay, or ATM
using full mesh or switched virtual circuits.
OpenOSPFD does not support these exotic networks
mostly because of lack of support by the OS and missing
infrastructure.

2.1.2 Database synchronisation and 
reliable flooding

Database synchronisation in a link-state protocol is cru-
cial. The routing calculation ensures a loop-free routing
as long as the database remains perfectly synchronised.
It is no wonder that this is the most fragile part of the
specification. Especially with all the additional complex-
ity added by multicasting of updates and the presence of
DR and BDR routers. A reliable and robust flooding pro-
cedure is very important because a little inadvertence
can result in a major network “melt down” where only a
full reset of all routers cures the situation.
Database synchronisation takes two forms. First there is
the initial database synchronisation. Following it the dis-
tributed copies of the database need to be kept in sync by
reliably flooding updates to all routers in the network.
The initial database exchange is done when two routers
build an adjacency. First a request list is built up through
a TFTP like database exchange phase. In the exchange
phase one of the two neighbors is elected as master of
that session. This router sends a Database Description
packet to the slave and waits for an answer. If none is
received within some amount of time the packet is
retransmitted. A sequence number identifies duplicates.
At any given point in time only one packet can be out-
standing. Afterwards Link-State Requests are sent
between the two routers. The other side then sends the
requested link-state announcement (LSA) back to the
requesting router. A full adjacency has been set up when
the request list is empty. Now reliable flooding needs to
ensure that the databases remain perfectly synchronised.
Every time a link changes state or after a 30 minute time-
out a LSA needs to be reflooded. A LS update received
on one interface needs to be sent out on all other inter-
faces. This simple rule is unfortunately not sufficient
because the flooding would never stop. So the router
checks his database to see if the update was already
received on a different path. In that case the update does
not need to get reflooded. It is also necessary to
acknowledge the updates because an non reliable trans-
port layer was chosen. Additionally implicit acknowl-
edgements and timeouts, throttling the generated LS
updates, help to make the flooding more robust and the
implementation more complex, yet again.

2.1.3 Areas

One problem of a link-state protocol is the computation
cost bourn by every router, particularly in large net-
works. Many routers have an underpowered CPU and so
OSPF areas where invented to divide a large network
into smaller pieces. Every area is connected to a special
backbone area. In most cases inter-area routing goes via
the backbone. Routers that are connected to multiple
areas are area border routers (ABR) and are always con-
nected to the backbone area. If no direct connection to
the backbone is possible, a virtual-link has to be estab-
lished to at least one backbone router. Areas where no
transit traffic is exchanged can be converted into stub
areas, reducing the routing table to a bare minimum.
Stub areas are useful to connect routers with minimal
memory configurations to large OSPF clouds.

LSAs are flooded only inside an area. The ABR has the
duty to reflood the other areas with special summary-
LSAs to inform them of available prefixes inside the
originating area.
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2.1.4 Border routers

Besides ABRs another kind of boarder router exists. A
router is automatically an AS border router (ASBR) if it
imports routes from external sources into the link-state
database. External sources are other routing protocols or
manually configured static routes. These routers are on
the boarder of the OSPF cloud but are not necessary on
the real AS border. The external routes redistributed by a
ASBR are special as they are flooded through the full
OSPF cloud instead of per area as all other LSAs. Only
stub areas are left out to avoid overloading those poor
little routers in them.

2.2 Packets
There are five different packet types defined. Every
packet starts with a common 24 byte OSPF header. This
header includes all necessary information for the recipi-
ent to determine if it should be accepted and processed
or ignored and dropped.

Figure 2: Common OSPF header

The standard IP CRC checksum is used to validate
packet integrity. Multiple authentication procedures are
defined but only one can be considered useful. Only the
cryptographic authentication is enough strong to protect
OSPF traffic. Only cryptographic authentication can pre-
vent spoofing and replay attacks. After the verification
the payload of the packet is examined.
The following packet types are defined:

Table 1: OSPF packet types

1 Hello

2 Database Description

3 Link-State Request

4 Link-State Update

5 Link-State Acknowledgement

Version # Type Packet Length

Router ID

Area ID

Checksum Authentication Type

Authentication Data

Authentication Data
2.2.1 Hello

Figure 3: Hello Header

Hello packets are sent periodically in order to establish
and maintain neighbor relationships. Hello packets are
sent to a multicast group to enable dynamic discovery of
neighboring routers. All routers to a common network
must agree on certain parameters. The most important
part of the hello packet is the neighbor list at the end.
The router ID of each router from which a valid Hello
packet has recently been received is added to that list.
Only after the own router ID is seen in a neighbors Hello
packet an adjacency can be formed.

2.2.2 Database Description

Figure 4: Database Description Header

These packets are exchanged when an adjacency is ini-
tialised. They describe the contents of the link-state data-
base. The initial database exchange is done similar to the
TFTP protocol. For that reason a sequence number is
included in the header.

Additionally the MTU of the outgoing interface is
included to detect possible forwarding issues with large
packets. The rest of the packet consists of a list of LSA
headers. A LSA header contains all information to
uniquely identify a LSA.

Version # 1 Packet Length

Router ID

Area ID

Checksum Authentication Type

Authentication Data

Authentication Data

Network Mask

Hello Interval Options Router Priority

Router Dead Interval

Designated Router

Backup Designated Router

Neighbor

...

Version # 2 Packet Length

Router ID

Area ID

Checksum Authentication Type

Authentication Data

Authentication Data

Interface MTU Options

DD Sequence Number

LSA Header

Flags

...
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2.2.3 Link-State Request

Figure 5: Link-State Request Header

After exchanging Database Description packets with the
neighboring router, Link-State Request packets request
pieces of the neighbors LS database that are more up-to-
date. Each LSA requested is specified by its LS type,
Link-State ID, and Advertising Router. This uniquely
identifies the LSA, but not its instance. Link-State
Request packets are understood to be requests for the
most recent instance. It is possible to request multiple
LSA with one LS request packet.

2.2.4 Link-State Update

Figure 6: Link-State Update Header

These packets implement the flooding of LSAs. Each
Link-State Update packet carries a collection of LSAs
one hop further from their origin. Several LSAs may be
included in a single packet. The body of the Link-State
Update packet consists of a list of LSAs.

Version # 3 Packet Length

Router ID

Area ID

Checksum Authentication Type

Authentication Data

Authentication Data

LS Type
Link-State ID

Advertising Router

...

Version # 4 Packet Length

Router ID

Area ID

Checksum Authentication Type

Authentication Data

Authentication Data

LSA

...

Number of LSAs
2.2.5 Link-State Acknowledgement

Figure 7: Link-State Acknowledgement Header

In order to make the flooding procedure reliable, flooded
LSAs are acknowledged in Link-State Acknowledge-
ment packets. Multiple LSAs can be acknowledged in a
single Link-State Acknowledgement packet. The format
of this packet is similar to that of the Data Description
packet. The body of both packets is simply a list of LSA
headers.

2.2.6 Link-State Advertisements Header

Each LSA begins with a common 20 byte header. This
header is enough to uniquely identify a LSA. So it is
enough to use the LSA header in LS acknowledgements
and Database Description packets. LSAs are identified
by the LS type, Link-State ID, and Advertising Router
triple. Additionally a LS sequence number and LS age
are included to determine which instance is more recent.
The LS checksum protects the integrity of LSAs. Instead
of the known CRC algorithm specified in many IP proto-
cols a ISO checksum algorithm – also known as Fletcher
Checksum – is employed.

Figure 8: Link-State Advertisements Header

Each LSA type has a separate advertisement format. The
LS types defined in the OSPF standard are as follows:

Table 2: LS types

1 Hello

2 Database Description

3 Link-State Request

4 Link-State Update

5 Link-State Acknowledgement

Version # 5 Packet Length

Router ID

Area ID

Checksum Authentication Type

Authentication Data

Authentication Data

LSA Header

...

Options LS TypeLS age

Link-State ID

Advertising Router

LS Checksum Length

LS sequence number
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Router- and Network-LSA describe the network inside
an area. Summary-LSA are injected by area border rout-
ers (ABRs) and describe inter-area destinations. AS-
external-LSAs are originated by ASBRs to describe des-
tinations external to the OSPF routing domain.

Design

Figure 9: Design of OpenOSPFD

The design of OpenOSPFD is based on the one in
OpenBGPD. The routing daemon is split into three proc-
esses. The privileged parent process handles the kernel
routing table updates. The OSPF engine handles all
incoming packets and the state machines with all the
necessary periodic events and timeouts. Finally the route
decision engine stores the LS database, calculates the
SPF tree and the resulting routing table. This separation
into three processes does not only enhance the security
but also the stability. Even a large database recomputa-
tion in the RDE will not hold up the keep alive packets
sent out by the OSPF engine. The Inter-Process Commu-
nication (IPC) system is almost the same as in
OpenBGPD. The only major difference is the use of
libevent for timers and file descriptor polling instead of
poll(2). The basic imsg framework is still the same.
OpenOSPFD switched to libevent mostly because of the
OSPF engine. The engine is mostly event driven with
many concurrent timers running. OpenOSPFD can be
controlled and monitored via ospfctl. It works very simi-
lar to bgpctl for OpenBGPD.
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3.1 Processes

3.1.1 ospfd parent

The ospfd parent process is the only one running with
root privileges. This is necessary to update the kernel
routing table. This process listens on a routing socket for
changes and updates and distributes that information to
the OSPF engine or the RDE. At a later time config-file
reloads will be handled by the parent process too.

3.1.2 OSPF engine

The OSPF engine listens to the network
and processes the OSPF packets. Both
the interface and the neighbor finite state
machine are implemented in the OSPF
engine. This includes the DR/BDR elec-
tion process. Additionally the reliable
flooding of LS updates with retransmis-
sion and acknowledgement is done by
the engine.

3.1.3 Route Decision Engine

The RDE stores the LS database, calcu-
lates the SPF tree, and informs the
parent process about changes in the
resulting routing table. Premature LSA
aging is done by the RDE as well. Addi-
tionally redistribution of networks is
handled by the process. The RDE syn-
chronises multiple areas if the router is
acting as ABR and refloods summary-
LSA into the different areas if necessary.

3.1.4 ospfctl

ospfctl is the tool to control and monitor OpenOSPFD. It
uses a UNIX local socket to communicate with ospfd.
Over this socket imsgs are passed which encapsulate the
information. There is no command line interface to
OpenOSPFD because it doesn't make sense to write a
clumsy CLI on a UNIX system shipping with very pow-
erful shells and many tools to manipulate the status out-
put. ospfctl is mostly an adapted bgpctl.
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Implementation

OpenOSPFD currently consist of around 12'000 lines of
C code. For comparison OpenBGPD is currently a bit
under 20'000 lines. Zebra/Quagga ospfd has almost
40'000 lines of code. And that is just the ospfd directory,
not including the 35'000 lines in lib and the 15'000 lines
for the zebra daemon.

Lets start with a short overview of the source files.

Table 3: Overview of source files

area.c Area handling which is actually 
very simple.

auth.c Implementing all OSPF 
authentication extensions. 
Nobody wants to run a OSPF 
network without using 
cryptographic authentication.

buffer.c buffer handling mostly for the 
imsg framework but also used to 
generate outgoing packets.

control.c ospfctl session management and 
message verification.

database.c Code for the initial database 
exchange. This is not related the 
LS database that is managed by 
the RDE.

hello.c Generating and parsing of Hello 
packets is done here.

imsg.c imsg framework mostly copied 
from OpenBGPD.

in_cksum.c Implementation of the CRC16 
checksum of the TCP/IP standards.

interface.c Interface finite state machine, 
event handling and interface 
specific functions.

iso_cksum.c ISO checksum also known as 
Fletcher checksum for LSAs.

kroute.c Kernel routing socket handling 
including the FIB table.

log.c Various logging functions mostly 
adapted from OpenBGPD.

lsack.c Link-State Acknowledgement 
construction and parsing.

lsreq.c Link-State Request construction 
and parsing, including the 
request list functions.

lsupdate.c Link-State Updates construction 
and parsing, including the 
flooding function and 
retransmission lists.

neighbor.c Neighbor finite state machine 
and event handling.
4.1 Important datastructures
There are four main datastructures in OpenOSPFD. It is
important to know what such a structure represents to
understand the code. Most of the time when the term
interface is used, the actual struct iface of that inter-
face is meant. Ditto for neighbor or area.

4.1.1 ospfd_conf

This is the main config of the router. It holds the parame-
ters like the router ID, spf_delay or
redistribute_flags. The lsa_tree and cand_list are
used in the RDE by the LS database and SPF algorithm.
The area_list holds all configured areas. Finally there
is one event handler used for polling the raw socket or
implementing the SPF timer depending on the process it
is used in.

Code snip 1: struct ospfd_conf
struct ospfd_conf {

struct event ev;
struct in_addr rtr_id;
struct lsa_tree lsa_tree;
LIST_HEAD(, area) area_list;
LIST_HEAD(, vertex) cand_list;
u_int32_t opts;
u_int32_t spf_delay;
u_int32_t spf_hold_time;
int spf_state;
int ospf_socket;
int flags;
int redistribute_flags;
int options; /* OSPF options */
u_int8_t rfc1583compat;
u_int8_t border;

};

4.1.2 area

Area specific configurations are stored in the area
descriptor. There are many parameters that are mostly
used by the OSPF engine. Exclusively for the RDE are
lsa_tree and the nbr_list. The first stores the per area
LS database. The second is a list of all active neighbors
from the RDE perspective. The OSPF engine tells the
RDE when neighbors are created, deleted, or when their
state changes. On the other hand active is only used by

ospfd.c Parent process, home of main().

ospfe.c OSPF engine main event loop 
plus functions for self originated 
LSAs.

packet.c Packet reception and sending.

parse.y Configuration parser.

printconf.c Configuration dumping used by 
the -n switch.

rde.c RDE main event loop plus other 
RDE specific functions.

rde_lsdb.c LS database code.

rde_spf.c SPF algorithm and RIB 
calculation.

Table 3: Overview of source files
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the OSPF engine. active tracks the number of neigh-
bors which are in state FULL. If the number is zero the
area is considered inactive. This counter is used to deter-
mine if a router is an area border router.

Code snip 2: struct area
struct area {

LIST_ENTRY(area)  entry;
struct in_addr  id;
struct lsa_tree  lsa_tree;
LIST_HEAD(, iface)  iface_list;
LIST_HEAD(, rde_nbr)  nbr_list;
u_int32_t  stub_default_cost;
u_int32_t  num_spf_calc;
u_int32_t  dead_interval;
int  active;
u_int16_t  transmit_delay;
u_int16_t  hello_interval;
u_int16_t  rxmt_interval;
u_int16_t  metric;
u_int8_t  priority;
u_int8_t  transit;
u_int8_t  stub;

};

4.1.3 interface

Every configured interface is represented by a struct
iface. It stores values like the link_state, baudrate,
MTU, and interface type. There are some additional
OSPF specific parameters like the auth_type, list of
keys used for cryptographic authentication
(auth_md_list), interface metric and interface state.
Lets have a look at the neighbor list and the three neigh-
bor pointers dr, bdr, and self. dr and bdr are pointers to
the active DR or BDR neighbor or NULL if there is none.
self is used for a dummy neighbor structure that repre-
sents the router himself. Using this dummy neighbor
simplifies many cases but additional care needs to be
taken to not remove it by accident or doing some other
stupid action with it. A back pointer to the parent area
this interface is part of is also included. An interface can
have up to three concurrent timers running and therefore
three different event structures are needed.

Code snip 3: struct iface
struct iface {

LIST_ENTRY(iface)  entry;
struct event  hello_timer;
struct event  wait_timer;
struct event  lsack_tx_timer;

LIST_HEAD(, nbr)  nbr_list;
TAILQ_HEAD(, auth_md)  auth_md_list;
struct lsa_head  ls_ack_list;

char  name[IF_NAMESIZE];
struct in_addr  addr;
struct in_addr  dst;
struct in_addr  mask;
struct in_addr  abr_id;
char *auth_key;
struct nbr *dr;
struct nbr *bdr;
struct nbr *self;
struct area *area;

u_int32_t  baudrate;
u_int32_t  dead_interval;
u_int32_t  ls_ack_cnt;
u_int32_t  crypt_seq_num;
unsigned int  ifindex;
int  fd;
int  state;
int  mtu;
u_int16_t  flags;
u_int16_t  transmit_delay;
u_int16_t  hello_interval;
u_int16_t  rxmt_interval;
u_int16_t  metric;
enum iface_type  type;
enum auth_type  auth_type;
u_int8_t  auth_keyid;
u_int8_t  linkstate;
u_int8_t  priority;
u_int8_t  passive;

};

4.1.4 neighbor

Struct neighbor represents the neighbor relationship
from the local point of view. To maintain a session suc-
cessfully a LS retransmission and request list is required
plus a list for the database snapshot. Then a few values –
dd_seq_num, dd_pending, last_rx_options,
last_rx_bits, and master – are only used in the
EXCHANGE phase when Database Description packets
are transmitted. peerid is a unique ID used in all three
processes. The peerid is used in imsgs to tell the recipi-
ent of the message which neighbor is guilty for the just
received message. The interface, over which this neigh-
bor is reached, is stored in iface. The neighbor structure
is per interface so if two routers are connected via two
different networks two different neighbor structures will
be created for the same router but the structures are
added to different interfaces.

Code snip 4: struct nbr
struct nbr {

LIST_ENTRY(nbr)  entry, hash;
struct event  inactivity_timer;
struct event  db_tx_timer;
struct event  lsreq_tx_timer;
struct event  ls_retrans_timer;
struct event  adj_timer;

struct nbr_stats stats;
struct lsa_head  ls_retrans_list;
struct lsa_head  db_sum_list;
struct lsa_head  ls_req_list;

struct in_addr  addr;
struct in_addr  id;
struct in_addr  dr; /* designated router */
struct in_addr  bdr; /* backup DR */

struct iface *iface;
struct lsa_entry*ls_req;
struct lsa_entry*dd_end;

u_int32_t  dd_seq_num;
u_int32_t  dd_pending;
u_int32_t  peerid;/* unique ID in DB */
u_int32_t  ls_req_cnt;
u_int32_t  crypt_seq_num;

int  state;
u_int8_t  priority;
u_int8_t  options;
u_int8_t  last_rx_options;
u_int8_t  last_rx_bits;
u_int8_t  master;

};

4.2 Parent Process

4.2.1 Start-up

On start-up ospfd first initialises the log subsystem and
fetches the list of available interfaces. This list is
required for the next step, the configuration file parsing.
The yacc parser used by ospfd is based on bgpds parser
which in turn has his origin in the pf parser. Explaining
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the parser goes beyond the scope of this paper. Important
to know is that the configuration is parsed into a hierar-
chy of structures.
The configuration consists of a list of areas and every
area holds a list of interfaces that are part of this area.
Last but not least every interface has a list of neighbors
that is dynamically created as soon as a valid Hello
packet is received from an other OSPF router on that
interface.
After the file got parsed ospfd daemonises and starts the
child processes. Beforehand a set of socketpairs – a spe-
cial sort of pipes – are created. Finally the event handlers
are set up, rest of the kroute structures is initialised and
the parent reports ready for service.
Meanwhile both children have started. First of all both
chroot(2) to /var/empty and drop privileges by switching
to the special user _ospfd. Before doing that the OSPF
engine creates a UNIX local socket for ospfctl and opens
the raw IP socket to receive and send packets to the net-
work. After dropping privileges the OSPF engine initial-
ises the different subsystems, sets the event handlers and
starts the actual work by kicking the interface finite state
machine. The RDE start-up is even simpler as it just has
to initialise the internal structures and event handlers.

4.2.2 Routing socket and FIB

The main purpose of the parent process is to maintain
the Forward Information Base (FIB) and keep the infor-
mation in sync with the kernel routing table. This syn-
chronisation is to be done in both directions.
Additionally link-state changes and arrival or departure
of interfaces are handled via the routing socket as well.
The kroute code maintains two primary data structures.
A prefix tree (kroute) and an interface tree (kif). These
two trees are kept in sync with the kernel through the
routing socket. On start-up fetchtable() loads the
kroute tree and fetchifs() does the same for the kif
tree. Routing changes are tracked by dispatch_rtmsg()
which handles kroute changes directly but off-loads
interface specific messages to if_change() and
if_announce(). To modify the kernel routing table
send_rtmsg() is used. send_rtmsg() translates a
struct kroute into a rt_msg structure expected by the
routing socket. The parent process uses kr_change() to
add or modify routes and kr_delete() to remove routes.
These changes are propagated to the kernel routing table
if needed.

Both the kroute and kif tree are implemented as red-
black trees – a balanced binary tree. An API to find,
insert and remove nodes is specified to simplify the tree
manipulation.
Everytime a route is added or removed to the kroute tree
kr_redistribute() is called. This function transmits
possible candidates for redistribution to the RDE. In the
RDE kif_validate() verifies that the nexthop is actu-
ally reachable. This is a work a round that should be
fixed later as it is currently not possible to track and
handle newly arriving network interfaces at runtime.
Last but not least kr_show_route() and kr_ifinfo()
pass information about kroutes or interfaces to ospfctl.

4.3 OSPF Engine
The finite state machines implemented in ospfd are
simple table driven state machines. Any state transition
may result in an specific action to be run. The resulting
next state can either be a result of the action or is fixed
and pre-determined.

4.3.1 Interface state machine

Figure 10: Interface FSM
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DROTHER

The router is neither DR nor BDR on the connected net-
work. In this state the router will only form adjacencies
to both the DR and the BDR. All other neighbors will
stay in neighbor state 2-WAY.

BACKUP

The router is the BDR on the connected network seg-
ment. If the DR fails it will promote itself to be the new
DR. The router forms adjacencies to all neighbors in the
network segment.

DR

The router is the DR on the connected network segment.
Adjacencies are established to all neighbors in the net-
work segment. Additional duties are origination of a net-
work-LSA for the network node and flooding of LS
updates on behalf of all other neighbors.

Only a few events are needed. The events UP, DOWN,
LOOP, UNLOOP are obvious. The other events WAIT-
TIMER, BACKUPSEEN and NEIGHBORCHANGE are
restricted to broadcast and NBMA networks. WAIT-
TIMER and BACKUPSEEN are used to move out of state
WAITING by running the election process. The NEIGH-
BORCHANGE event is issued when there is a change in
the set of the bidirectional neighbors. This event will
force a re-election of the DR and BDR.
The most important actions are if_act_start() and
if_act_elect(). if_act_start() sets the correct next
state (POINT-TO-POINT or WAITING), initialises the
interface and starts the hello timer to begin with the
neighbor discovery process. if_act_elect() elects a
DR and BDR for a network. This function caused major
problems because of subtle bugs and a sloppy written
RFC.
First a backup designated router has to be elected.

Code snip 5: BDR election
/* elect backup designated router */
LIST_FOREACH(nbr, &iface->nbr_list, entry) {

if (nbr->priority == 0 ||   /* not electable */
    nbr->state & NBR_STA_PRELIM ||

    /* not available */
    nbr->dr.s_addr == nbr->addr.s_addr ||
    nbr == dr)     /* don't elect DR */

continue;
if (bdr != NULL) {

/*
 * routers announcing themselves as BDR
 * have higher precedence over those
 * routers announcing a different BDR.
 */
if (nbr->bdr.s_addr == nbr->addr.s_addr) {

if (bdr->bdr.s_addr ==
    bdr->addr.s_addr)

bdr = if_elect(bdr, nbr);
else

bdr = nbr;
} else if (bdr->bdr.s_addr !=
    bdr->addr.s_addr)

bdr = if_elect(bdr, nbr);
} else

bdr = nbr;
}

Every neighbor is evaluated, neighbors with a priority of
0 are skipped. Additionally all neighbors that are not in
state 2-WAY or higher plus possible DRs are skipped.
From the remaining set a BDR is selected. Routers
announcing themselves as BDR have higher precedence
so the code checks if the current neighbor is announcing
himself BDR. The same thing is done with the current
candidate. If both are announcing themselves as BDR or
both are not announcing themselves as BDR
if_elect() elects a new candidate. The helper function
if_elect() compares two neighbors and returns the
preferred one. In the other two cases no additional com-
parison needs to be done as the next candidate is known.

Code snip 6: DR election
/* elect designated router */
LIST_FOREACH(nbr, &iface->nbr_list, entry) {

if (nbr->priority == 0 ||
    nbr->state & NBR_STA_PRELIM ||
    (nbr != dr &&
    nbr->dr.s_addr != nbr->addr.s_addr))
    /* only DR may be elected check priority too */

continue;
if (dr == NULL)

dr = nbr;
else

dr = if_elect(dr, nbr);
}

if (dr == NULL) {
/* no designate router found use backup DR */
dr = bdr;
bdr = NULL;

}

Almost the same process is done for electing a DR.
Neighbors that are neither in state 2-WAY or higher or
have a priority of 0 are skipped again. Additionally all
neighbors that don't announce themselves as DR are
skipped as well, with the only exception of the current
DR itself. This is done because the election process can
be restarted with the current candidates. If no DR was
elected the current BDR is promoted DR. If the router is
involved in the election it has to redo the election.

Code snip 7: final step of election
/*
 * if we are involved in the election (e.g. new DR or no
 * longer BDR) redo the election
 */
if (round == 0 &&
    ((iface->self == dr && iface->self != iface->dr) ||
    (iface->self != dr && iface->self == iface->dr) ||
    (iface->self == bdr && iface->self != iface->bdr) ||
    (iface->self != bdr && iface->self == iface->bdr))) {

/*
 * Reset announced DR/BDR to calculated one, so
 * that we may get elected in the second round.
 * This is needed to drop from a DR to a BDR.
 */
iface->self->dr.s_addr = dr->addr.s_addr;
if (bdr)

iface->self->bdr.s_addr = bdr->addr.s_addr;
round = 1;
goto start;

}

Before doing that we set the current candidates in our
own structure so that the second round will actually
modify the behaviour. It is well possible that some
checks are unnecessary or to complex but this current
implementation seems to behave correctly and so we
keep it as is.
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After the election process a bit of housekeeping has to be
performed. If the DR or BDR changed, all neighbors
have to be checked if the adjacency is still OK. Addition-
ally it may be necessary to join or leave the AllDRouters
multicast group. In case the router was or is now the DR
an updated network-LSA needs to be reflooded.
Getting the DR/BDR election right was one of the most
difficult parts of the development. Often unexpected
behaviours where found because of small mistakes here
and in recv_hello(). It took multiple retries and many
debugging sessions to get that code where it is now. The
poorly written RFC doesn't help much in clarifying the
issues.

4.3.2 Neighbor state machine

Figure 11: Neighbor FSM

DOWN

A neighbor is considered down if no hello has been
received for more than router-dead-time seconds. This is
also the initial state of a neighbor.

ATTEMPT

This state is only valid for neighbors attached to NBMA
networks. Therefore it is currently unused.

INIT

In this state, a Hello packet has recently been seen from
the neighbor. However, bidirectional communication has
not yet been established.

2-WAY

The communication between the neighbor and the router
is bidirectional. Neighbors will remain in this state if
both the router itself and the neighbor are neither DR nor
BDR.
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This is the first step in creating an adjacency between the
two routers. In this state the initial DD sequence number
and the master is selected for the upcoming database
exchange phase.

SNAPSHOT

This state is actually an extension of the state machine
defined by the RFC. Because the LS database is stored in
the RDE, a current snapshot of all LSA headers have to
be requested by the OSPF engine. The database
exchange will start after the snapshot is done.

EXCHANGE

This is the database exchange phase. Additionally all
neighbors in state EXCHANGE or higher (LOADING,
FULL) participate in the flooding procedure. Starting
from this state all packet types can be received inclusive
flooded LS updates.

LOADING

The state is only entered if the Link-State Request list is
not empty. In that case Link-State Request packets are
sent out to fetch the more recent LSAs from the neigh-
bors LS database.

FULL

The two routers are now fully adjacent. The connection
will now appear in router-LSAs and network-LSAs.
Only in this state real traffic will be routed between the
two routers.

4.3.3 Packet reception

The OSPF engine uses the recv_packet() libevent han-
dler to receive packets from the raw IP socket. The
packet is validated via ip_hdr_sanity_check() and
ospf_hdr_sanity_check(). Some additional length
checks are done to ensure that no access outside of the
packet is done. It is currently not possible in OpenBSD
3.8 to get the incoming interface via recvfrom(2) so we
need to find the interface the hard way. find_iface()
does this job by walking through all configured inter-
faces and comparing the source address of the incoming
packet with the interface address. This is not optimal and
will be changed soon. The next step is looking up the
neighbor and afterwards the OSPF authentication is run.
nbr_find_id() takes the unique router ID to get the
neighbor structure with all information needed. This is
done before auth_validate() because the crypto-
graphic authentication method uses a per neighbor spe-
cific sequence number to immunize against replay
attacks. If necessary auth_validate() does the CRC
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checksumming of the packet. Finally the packet is
passed on according to its packet type to one of the fol-
lowing functions.

recv_hello()

Every hello-interval seconds a Hello packet is sent to all
neighbors. On broadcast networks this is done with one
multicast packet. The Hello packet is used for neighbor
discovery and to maintain neighbor relationships. As
first step all the common options need to be compared. If
one of hello-interval, router-dead-time, or the stub area
flag differs the packet is not accepted. So all routers on a
common network must have the same configuration for
these values.

Code snip 8: neighbor look up
switch (iface->type) {
case IF_TYPE_POINTOPOINT:
case IF_TYPE_VIRTUALLINK:

/* match router-id */
LIST_FOREACH(nbr, &iface->nbr_list, entry) {

if (nbr == iface->self)
continue;

if (nbr->id.s_addr == rtr_id)
break;

}
break;

case IF_TYPE_BROADCAST:
case IF_TYPE_NBMA:
case IF_TYPE_POINTOMULTIPOINT:

/* match src IP */
LIST_FOREACH(nbr, &iface->nbr_list, entry) {

if (nbr == iface->self)
continue;

if (nbr->addr.s_addr == src.s_addr)
break;

}
break;

default:
fatalx("recv_hello: unknown interface type");

}

if (!nbr) {
nbr = nbr_new(rtr_id, iface, 0);
/* set neighbor parameters */
nbr->dr.s_addr = hello.d_rtr;
nbr->bdr.s_addr = hello.bd_rtr;
nbr->priority = hello.rtr_priority;
nbr_change = 1;

}

The packet is now accepted and the neighbor is looked
up. Depending on the interface type either by router ID
or by interface address. If no neighbor could be found a
new one is created. A new neighbor is considered a
NEIGHBORCHANGE and the nbr_change flag is set
that an interface neighbor change event can be issued
later.

Code snip 9: bidirectional or not
nbr_fsm(nbr, NBR_EVT_HELLO_RCVD);

while (len >= sizeof(nbr_id)) {
memcpy(&nbr_id, buf, sizeof(nbr_id));
if (nbr_id == ospfe_router_id()) {

/* seen myself */
if (nbr->state & NBR_STA_PRELIM)

nbr_fsm(nbr, NBR_EVT_2_WAY_RCVD);
break;

}
buf += sizeof(nbr_id);
len -= sizeof(nbr_id);

}

if (len == 0) {
nbr_fsm(nbr, NBR_EVT_1_WAY_RCVD);
/* set neighbor parameters */
nbr->dr.s_addr = hello.d_rtr;
nbr->bdr.s_addr = hello.bd_rtr;
nbr->priority = hello.rtr_priority;
return;

}

Multiple neighbor events have to be generated. First of
all is the hello received event. Next it is checked if there
is already bidirectional communication between the
routers. This is done by walking through the list of
neighbors in the hello packet and compared it with the
own router ID. If no match was found a 1-WAY received
event gets issued. If the match is done the first time – the
neighbor is in an embryonic state like INIT – a 2-WAY
received event is generated.

Now the scariest part of OpenOSPFD is coming. Han-
dling fast start-ups and the famous interface event
BACKUPSEEN. This part of the Hello protocol was
rewritten multiple times and the result was always some
other obscure problem in the election process. In the end
OpenOSPFD had to violate the RFC a bit. The RFC is
not very clear about how to handle the event BACK-
UPSEEN correctly. 

From the RFC:

• If the neighbor is both declaring itself to be Designated
Router (Hello Packet's Designated Router field = Neighbor
IP address) and the Backup Designated Router field in the
packet is equal to 0.0.0.0 and the receiving interface is in
state Waiting, the receiving interface's state machine is
scheduled with the event BACKUPSEEN. …

• If the neighbor is declaring itself to be Backup Designated
Router (Hello Packet's Backup Designated Router field =
Neighbor IP address) and the receiving interface is in state
Waiting, the receiving interface's state machine is scheduled
with the event BACKUPSEEN. …

Now this sounds simple but it isn't. The first case is not
problematic but the second one is. Why? Because it is
not known in which order hello packets are received.
What does happen if we start an election process and the
actual DR neighbor is still in state 1-WAY? A major con-
fusion is the result. The election process evaluates the
BDR as DR and himself as BDR or something like this
and the result is a network with too many DR / BDR
routers.

Code snip 10: scary fast start-ups
if (iface->state & IF_STA_WAITING &&
    hello.d_rtr == nbr->addr.s_addr && hello.bd_rtr == 0)

if_fsm(iface, IF_EVT_BACKUP_SEEN);

if (iface->state & IF_STA_WAITING &&
    hello.bd_rtr == nbr->addr.s_addr) {

/*
 * In case we see the BDR make sure that the DR is
 * around with a bidirectional connection
 */
LIST_FOREACH(dr, &iface->nbr_list, entry)

if (hello.d_rtr == dr->addr.s_addr &&
    dr->state & NBR_STA_BIDIR)

if_fsm(iface, IF_EVT_BACKUP_SEEN);
}
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To clear up the situation OpenOSPFD does an additional
check. It verifies that the DR has a bidirectional connec-
tion to the router and only if that is true a backup seen
event is issued. The result is that it may take a bit longer
to establish an adjacency and that some initial Database
Description packet are dropped. But the confusion of too
many DR/BDRs is avoided. The rest of recv_hello() is
simply here to issue the possible neighbor change events
that were detected earlier.

recv_db_description() 

While the send_db_description() function ended up
pretty simple recv_db_description() turned out to be
more problematic. Usual sanity checking is done first.
Afterwards additional checks are performed to verify the
MTU and detect possible duplicates because of retrans-
missions. The MTU check is required by the RFC, the
problem is that some OSPF implementations are lying
about their MTU and so only bigger MTUs are consid-
ered a problem.
The code path is dependent on the neighbor state. Pack-
ets received from neighbors in unexpected states are just
ignored. This includes state SNAPSHOT because during
the time the LSA snapshot is done we cannot respond to
a received packet. Funnily it is allowed to get Database
Description packets in state INIT. In that case some kind
of super fast start-up needs to be done. It looks like it
was simpler to fix the RFC than to fix someone's OSPF
implementation. So both the interface and neighbor FSM
are kicked and afterwards the new neighbor state has to
be checked again. If it is now in state EXSTART a fall-
through into the next case can be done.
In case EXSTART there are two possible scenarios. The
first is the reception of a Christmas packet – one with all
flags turned on. This is the initial packet and
OpenOSPFD has to evaluate if it is master or slave of the
database exchange phase. The slave will issue a negotia-
tion done event and sends back a packet with just the M
bit set.

Code snip 11: EXSTART scenario 1
/*
 * check bits: either I,M,MS or only M
 */
if (dd_hdr.bits == (OSPF_DBD_I | OSPF_DBD_M |
    OSPF_DBD_MS)) {

/* if nbr Router ID is larger than own -> slave */
if ((ntohl(nbr->id.s_addr)) >
    ntohl(ospfe_router_id())) {

/* slave */
nbr->master = 0;
nbr->dd_seq_num = ntohl(dd_hdr.dd_seq_num);

/* event negotiation done */
nbr_fsm(nbr, NBR_EVT_NEG_DONE);

}

The second scenario – a packet with just the M bit set, is
received. The M bit stands for “more” as in more data.
The master will finally issue the negotiation done event.
So the slave is actually sending valid data ahead of the
master. This is a bit strange but we are used to it.
Code snip 12: EXSTART scenario 2
} else if (!(dd_hdr.bits & (OSPF_DBD_I | OSPF_DBD_MS))) {

/* M only case: we are master */
if (ntohl(dd_hdr.dd_seq_num) != nbr->dd_seq_num) {

log_warnx("recv_db_description: invalid "
    "seq num, mine %x his %x",
    nbr->dd_seq_num,
    ntohl(dd_hdr.dd_seq_num));
nbr_fsm(nbr, NBR_EVT_SEQ_NUM_MIS);
return;

}
nbr->dd_seq_num++;

/* packet may already have data so pass it on */
if (len > 0) {

nbr->dd_pending++;
ospfe_imsg_compose_rde(IMSG_DD,
    nbr->peerid, 0, buf, len);

}

/* event negotiation done */
nbr_fsm(nbr, NBR_EVT_NEG_DONE);

}

Afterwards the actual transfer starts or continues. First of
all, packets with invalid flags and options result in a reset
of the session (sequence number mismatch event). If the
slave receives a duplicate packet it has to resend the last
packet. The master does not care about duplicate pack-
ets. Actually the master should never see a duplicate –
the slave will never send a packet by its own. If the
neighbor state is either LOADING or FULL the only
packets received should be duplicates. Anything else is
considered an error and the session is reset. Side effect
of this is that sending a packet with the Initialise (I) bit
set can be used to reset a neighbor relationship. Now the
sequence number is checked. Only the master is increas-
ing the number so the slave receives packets with the
current sequence number plus one. In case of the master
the sequence numbers are equal on receive and after-
wards the sequence number is increased. Our first imple-
mentation was a bit buggy and it took some debugging to
find all the small issues like forgetting to bump the
sequence number in a specific case.

Code snip 13: synchronising part 1
/* forward to RDE and let it decide which LSAs to request
 */
if (len > 0) {

nbr->dd_pending++;
ospfe_imsg_compose_rde(IMSG_DD, nbr->peerid, 0,
    buf, len);

}

The received LSA headers have to be sent to the RDE
where they are compared with the LS database. This
resulted in an interesting issue: if the RDE was busy the
OSPF engine could move forward and suddenly think
that no LSAs have to be requested and move the neigh-
bor directly into state FULL. Afterwards the RDE would
send some LSAs to request to the OSPF engine but it
was too late. To solve this race condition the dd_pending
counter was added. It gets increased for each sent data-
base description packet.
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Code snip 14: synchronising part 2
ospfe_dispatch_rde()

nbr->dd_pending--;
if (nbr->dd_pending == 0 && nbr->state & NBR_STA_LOAD) {

if (ls_req_list_empty(nbr))
nbr_fsm(nbr, NBR_EVT_LOAD_DONE);

else
start_ls_req_tx_timer(nbr);

}

When an IMSG_DD_END message arrives from the RDE
the counter gets decremented. If the counter drops to
zero no DD packets are pending. In case that the neigh-
bor state is now LOADING we actually hit the race con-
dition and so we have to either move to state FULL if the
request list is empty or start sending out LS requests.
Sometimes running a single daemon as three processes
needs some additional work to synchronise the proc-
esses. This is a nice example. Finally the next packet is
prepared for being sent by send_db_description(). If
there is nothing left to send and the received packet has
no M bit set then the exchange phase is mostly done. The
slave is finished but the master has to ensure that at least
one packet without the M bit has been sent and acknowl-
edged. The result is that the slave will always change
state before the master. Why should the end of the
exchange be less strange than the beginning?

recv_ls_req()

Link-State Requests are simply passed to the RDE but
only if the neighbor state is EXCHANGE or higher. In all
other states Link-State Request packets are ignored.

recv_ls_update()

Link-State Updates are simply dropped if the neighbor is
not in state EXCHANGE or higher. Otherwise all LSAs
are extracted from the packet and sent to the RDE one
after the other. While doing that additional length checks
are done to guard against buffer overflows. 

recv_ls_ack()

Link-State Acknowledgements are only accepted in
neighbor state EXCHANGE or higher. Otherwise the
packet is dropped. Every LSA header included in the
packet needs to be roughly validated with
lsa_hdr_check() and then possibly deleted from the
retransmission list. In case the interface is in state
DROTHER ls_retrans_list_del() will be called
twice. First it deletes LSAs from the global retransmis-
sion list of updates sent to the AllDRouters multicast
address. Second the per-neighbor queue is purged in case
the interface state changed lately. 
4.3.4 Packet delivery

send_hello()

send_hello() is called by the if_hello_timer() func-
tion that is run every hello-interval seconds if an inter-
face is not in state DOWN. Sending hellos is pretty
simple so it is a good example how the buffer framework
is used in OpenOSPFD.

Code snip 15: Allocate dynamic buffer
/* XXX READ_BUF_SIZE */
if ((buf = buf_dynamic(PKG_DEF_SIZE,
    READ_BUF_SIZE)) == NULL)

fatal("send_hello");

First a dynamic buffer is allocated. Currently a fixed size
of PKG_DEF_SIZE bytes is used but the buffer is allowed
to grow till READ_BUF_SIZE. This is not optimal as pack-
ets should not be fragmented by OSPF. For Hello pack-
ets this is not a big issue because the embedded data is
often very small. Other send functions use a different
approach by limiting the resulting packet size to the
MTU of the corresponding interface.

Code snip 16: Set correct destination
dst.sin_family = AF_INET;
dst.sin_len = sizeof(struct sockaddr_in);

switch (iface->type) {
case IF_TYPE_POINTOPOINT:
case IF_TYPE_BROADCAST:

inet_aton(AllSPFRouters, &dst.sin_addr);
break;

case IF_TYPE_NBMA:
case IF_TYPE_POINTOMULTIPOINT:

/* XXX not supported */
break;

case IF_TYPE_VIRTUALLINK:
dst.sin_addr = iface->dst;
break;

default:
fatalx("send_hello: unknown interface type");

}

The outgoing address needs to be determined. For broad-
cast and point-to-point networks this is the multicast
address AllSPFRouters. Virtual links are sent as unicast.
NBMA and point-to-multipoint are special and currently
not supported. For NBMA and point-to-multipoint the
packet has to be sent to all neighbors directly and
send_packet() would be called for every neighbor
once.

Code snip 17:  create Hello packet
/* OSPF header */
if (gen_ospf_hdr(buf, iface, PACKET_TYPE_HELLO))

goto fail;

/* hello header */
hello.mask = iface->mask.s_addr;
hello.hello_interval = htons(iface->hello_interval);
hello.opts = oeconf->options;
hello.rtr_priority = iface->priority;
hello.rtr_dead_interval = htonl(iface->dead_interval);

if (iface->dr) {
hello.d_rtr = iface->dr->addr.s_addr;
iface->self->dr.s_addr = iface->dr->addr.s_addr;

} else
hello.d_rtr = 0;
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if (iface->bdr) {
hello.bd_rtr = iface->bdr->addr.s_addr;
iface->self->bdr.s_addr = iface->bdr->addr.s_addr;

} else
hello.bd_rtr = 0;

if (buf_add(buf, &hello, sizeof(hello)))
goto fail;

Finally the packet is constructed. First of all the common
OSPF header is added. This is done for every packet type
and so a helper function gen_ospf_hdr() is used. The
Hello specific contents are filled in afterwards and added
with buf_add().

Code snip 18: Add active neighbors
/* active neighbor(s) */
LIST_FOREACH(nbr, &iface->nbr_list, entry) {

if ((nbr->state >= NBR_STA_INIT) &&
    (nbr != iface->self))

if (buf_add(buf, &nbr->id,
    sizeof(nbr->id)))

goto fail;
}

The Hello packets include a list of all bidirectional
neighbors (state 2-WAY or higher). Again the neighbor
IDs are added directly with buf_add(). The neighbor ID
is stored in network byte order or htonl() is used to cor-
rectly switch byte order.

Code snip 19: Final step
/* update authentication and calculate checksum */
if (auth_gen(buf, iface))

goto fail;

ret = send_packet(iface, buf->buf, buf->wpos,
    &dst);
buf_free(buf);
return (ret);

fail:
log_warn("send_hello");
buf_free(buf);
return (-1);

Last is updating authentication and checksum of the out-
going packet. The interface pointer is passed to
auth_gen() to get the necessary keys and sequence
number for the simple and cryptographic authentication.
The packet gets sent out via send_packet(). Before
sending the packet it is necessary to set the outgoing
interface for multicast traffic. This is done by
if_set_mcast() inside of send_packet(). Finally the
no longer needed buffer is freed.

send_db_description()

send_db_description() implements the sending part
of the database exchange. It sends out the initial Data-
base Description packet when moving the neighbor state
to EXSTART.

Code snip 20: Allocate fixed buffer
if ((buf = buf_open(nbr->iface->mtu - sizeof(struct ip)))
    == NULL)

fatal("send_db_description");

/* OSPF header */
if (gen_ospf_hdr(buf, nbr->iface, PACKET_TYPE_DD))

goto fail;

/* reserve space for database description header */
if (buf_reserve(buf, sizeof(dd_hdr)) == NULL)

goto fail;
Obvious differences to send_hello() are the use of
buf_open() instead of buf_dynamic(). Buf_open()

allocates a fixed size buffer of size nbr->iface->mtu -
sizeof(struct ip) – which is the maximum packet
size that does not get fragmented. Later buf_reserve()
is used on that buffer to reserve sizeof(dd_hdr) bytes.
The rest of the packet can be added and later
buf_seek() can be used to write into the reserved space
like this:

Code snip 21: Usage of buf_seek()
memcpy(buf_seek(buf, sizeof(struct ospf_hdr),
    sizeof(dd_hdr)), &dd_hdr, sizeof(dd_hdr));

The remainder of the function sets up the Database
Description header with its bit fields and sequence
number. If in state EXCHANGE, as many LSA headers
as possible are appended. While appending LSA headers
one must keep in mind that the cryptographic authentica-
tion will append MD5_DIGEST_LENGTH bytes to the end of
the packet.

send_ls_req()

send_ls_req() uses like send_db_description()

buf_open() to get a buffer that doesn't get fragmented.
While filling in the requested LSA headers some addi-
tional space gets reserved for the possible MD5 sum.

Code snip 22: Filling packet with requests
/* LSA header(s), keep space for a possible md5 sum */
for (le = TAILQ_FIRST(&nbr->ls_req_list); le != NULL &&
    buf->wpos + sizeof(struct ls_req_hdr) < buf->max -
    MD5_DIGEST_LENGTH; le = nle) {

nbr->ls_req = nle = TAILQ_NEXT(le, entry);
ls_req_hdr.type = htonl(le->le_lsa->type);
ls_req_hdr.ls_id = le->le_lsa->ls_id;
ls_req_hdr.adv_rtr = le->le_lsa->adv_rtr;
if (buf_add(buf, &ls_req_hdr, sizeof(ls_req_hdr)))

goto fail;
}

The rest is straight forward and mostly the same as in
send_hello().

send_ls_ack()

Actually we have to start in ls_ack_tx_timer()

because send_ls_ack() is just the last step to send out
an ack. send_ls_ack() will add the common OSPF
header and add the data passed to the function to the
packet. The list of acknowledgements is created by
ls_ack_tx_timer() in a not so nice way and therefore it
should not be used as example for other code. Especially
as it will be rewritten soon.

send_ls_update()

Sending out LS updates is easy but the retransmission
list and flooding procedure are a bit tricky.
send_ls_update() will just add a LSA to a buffer
together with a common OSPF header and send the



OpenOSPFD – design and implementation Claudio Jeker
results out. But there is one thing that must to be done
with the LSA first. It has to be aged with the value of
transmit-delay.

Code snip 23: LSA aging
pos = buf->wpos;
if (buf_add(buf, data, len))

goto fail;

/* age LSA before sending it out */
memcpy(&age, data, sizeof(age));
age = ntohs(age);
if ((age += iface->transmit_delay) >= MAX_AGE)

age = MAX_AGE;
age = htons(age);
memcpy(buf_seek(buf, pos, sizeof(age)), &age, sizeof(age));

First the current write position is stored and the LSA is
added to the buffer. The LS Age is stored in the first two
bytes of the LSA. The memcpy() extracts the age because
a direct memory access could end on unaligned memory.
Then the LSA is aged and written into the buffer with the
help of buf_seek() and the previously stored position.

4.3.5 Control handling

The handling of control sessions is actually a small
UNIX local socket server. There is a listener event
(control_listen()) that accepts (control_accept())
connections and creates a per control connection struc-
ture. control_dispatch_imsg() reads the request from
ospfctl. First the per connection structure are retrieved
and then the imsg's sent are extracted. They get either
forwarded to the parent, the RDE, or directly answered.
Messages forwarded to the other processes will often
require a response that needs to be relayed to ospfctl
because neither the RDE nor the parent process have
access to the socket. Relaying is done by
control_imsg_relay(). It has to be called for those
imsgs that need to get forwarded. This is done in the
imsg dispatch functions ospfe_dispatch_main() and
ospfe_dispatch_rde().

4.4 Route Decision Engine

4.4.1 LS Database

The LS database is implemented as a red-black tree –
actually multiple trees exist – one per area and a global
one for AS-external-LSAs. The key is the LS-type LS-ID
advertising router triple. The LSA is part of a vertex
that builds a node of the network connectivity graph.

Code snip 24: struct vertex
struct vertex {

RB_ENTRY(vertex) entry;
TAILQ_ENTRY(vertex) cand;
struct event  ev;
struct in_addr  nexthop;
struct vertex *prev;
struct rde_nbr *nbr;
struct lsa *lsa;
time_t  changed;
time_t  stamp;
u_int32_t  cost;
u_int32_t  ls_id;
u_int32_t  adv_rtr;
u_int8_t  type;
u_int8_t  flooded;

};

The vertex contains all necessary information not only
for the LS Database but for the SPF calculation too.
entry and cand are used to put the vertex into the red-
black tree or into the candidate list respectively. The
event ev is for a per-LSA entry timeout for aging. Addi-
tionally stamp is used for aging as well. changed is set to
the time the last modification was done to the LSA.
ls_id, adv_rtr and type are shorthands for the actual
values that are stored inside of lsa. These are used by
the tree search routine. The flooded flag should indicate
that a LSA was received as part of a flooding. Flooded
LSA are locked for MIN_LS_ARRIVAL seconds whereas
requested LSA are not. nbr represents the neighbor from
which the LSA was received. nbr has nothing to do with
the actual originator of the LSA. This is only done to
correctly flood out LSAs and sending an acknowledge-
ment back to the neighbor. prev is the parent vertex in
the SPF tree. It is possible to construct the actual path
through the network by following all prev pointers. This
is used to calculate the nexthop. The nexthop is the
address for forwarding packets to that destination. It is
normally the address of the last router-LSA before the
root node.

4.4.2 LSA aging

Before using a LSA that is in the DB it normally needs
to be aged. This is done by lsa_age() with help of the
vertex time stamp.

Code snip 25: LSA aging
now = time(NULL);
d = now - v->stamp;
/* set stamp so that at least new calls work */
v->stamp = now;

if (d < 0) {
log_warnx("lsa_age: time went backwards");
return;

}

age = ntohs(v->lsa->hdr.age);
if (age + d > MAX_AGE)

age = MAX_AGE;
else

age += d;

v->lsa->hdr.age = htons(age);

Normally it is enough to just add the difference of the
current time and stamp. Nonetheless some additional
care is needed. First of all time() returns the system
time and this can be modified by the user. I remember a
complete network outage at an ISP because the UNIX
time got changed on a Zebra/Quagga router. Afterwards
Zebra/Quagga was no longer working until a reboot on
the changed machines was performed. So by checking
whether the difference is positive it is at least possible to
fail in a save way. The other case that needs to be consid-
ered is that a LSA may never get older than MAX_AGE (1
hour).
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4.4.3 Comparing LSA

There are two functions to compare LSA. lsa_equal()
is similar to a memcmp() but compares a bit more. One
thing is important to note: LSA with age MAX_AGE are
never considered equal. This comes from the fact that
lsa_equal() is mostly used to determine if a recalcula-
tion of the SPF tree is required or for similar situations.
In that context LSAs with an age of MAX_AGE are always
special and it is OK to force an update.
The other compare function is lsa_newer() and imple-
ments the RFC specification of newer, equal and older
LSA. It works similar to other compare functions by
returning -1 if the first LSA is older, 1 if newer and 0 if
equal to the second LSA passed. The function compares
the sequence number, the LS checksum, and the LS age.
Once again a bit care needs to be taken when comparing
ages.

Code snip 26: Comparing ages
a16 = ntohs(a->age);
b16 = ntohs(b->age);

if (a16 >= MAX_AGE && b16 >= MAX_AGE)
return (0);

if (b16 >= MAX_AGE)
return (-1);

if (a16 >= MAX_AGE)
return (1);

i = b16 - a16;
if (abs(i) > MAX_AGE_DIFF)

return (i > 0 ? 1 : -1);

return (0);

If both LSA are at age MAX_AGE they are considered
equal. If only one has age MAX_AGE that one is newer and
last but not least the LS ages need to be at least
MAX_AGE_DIFF (15 minutes) apart to be not considered
equal.

4.4.4 LSA refresh

All LS_REFRESH_TIME seconds a LSA needs to be
refreshed by its originator. The age is reset to the initial
value and the sequence number is bumped. After modi-
fying the LSA the checksum has to be recalculated. The
LSA is flooded and a new timeout event is registered.
Non self originated LSA have the same timer running
but with MAX_AGE instead of LS_REFRESH_TIME. If the
timer fires the LSA will be deleted from the LS database
by flooding it out with age MAX_AGE. How to delete LSA
will be explained later as it is fairly complex.

4.4.5 LSA merging

If a self originated LSA changes, for example because a
neighbor relationship is established or lost, an updated
LSA needs to be reflooded. lsa_merge() takes care of
replacing the LSA in the database with the new one and
sets the LS sequence number of the new LSA to the cur-
rent used number.
Code snip 27: First set sequence number
if (v == NULL) {

lsa_add(nbr, lsa);
rde_imsg_compose_ospfe(IMSG_LS_FLOOD, nbr->peerid,
    0, lsa, ntohs(lsa->hdr.len));
return;

}

/*
 * set the seq_num to the current one.
 * lsa_refresh() will do the ++
 */
lsa->hdr.seq_num = v->lsa->hdr.seq_num;
/* recalculate checksum */
len = ntohs(lsa->hdr.len);
lsa->hdr.ls_chksum = 0;
lsa->hdr.ls_chksum = htons(iso_cksum(lsa, len,
    LS_CKSUM_OFFSET));

Sure if there was no LSA in the database in the first
place there is no need to merge. It is enough to just add
and flood the LSA. When changing the sequence number
the checksum has to be recalculated. The sequence
number is only set to the current value because there is
no need to increase it already. Especially if lsa_merge()
is used to remove a self originated LSA from the data-
base there is no need to rise the sequence number, it is
sufficient to set the age to MAX_AGE.

Code snip 28: Then overwrite and
reflood if necessary

/*
 * compare LSA; most header fields are equal
 * so don't check them
 */
if (lsa_equal(lsa, v->lsa)) {

free(lsa);
return;

}

/* overwrite the lsa all other fields are unaffected */
free(v->lsa);
v->lsa = lsa;
start_spf_timer();

/* set correct timeout for reflooding the LSA */
now = time(NULL);
timerclear(&tv);
if (v->changed + MIN_LS_INTERVAL >= now)

tv.tv_sec = MIN_LS_INTERVAL;
evtimer_add(&v->ev, &tv);

Now lsa_equal() is used to determine whether to actu-
ally reflood the LSA. If the LSA did not change there is
nothing to modify and we're done. Otherwise the LSAs
are exchanged and a SPF recalculation is issued. Finally
the reflooding is prepared. This is done via a timer
because it is not allowed to send out updates faster than
MIN_LS_INTERVAL (5) seconds.

4.4.6 lsa_self()

Identifying self originated LSA is an important task.
This comes from the fact that if a router leaves the net-
work the other routers will not remove the LSAs of this
router until the LS age hits MAX_AGE. If the router joins
the network again – after a reboot for example – the old
LSAs are still floating around. So it is the routers duty to
detect those old self originated LSAs and renew them or
remove them from the database. This task is done by
lsa_self().
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Code snip 29: Detect self originated LSA
if (nbr->self)

return (0);

if (rde_router_id() == new->hdr.adv_rtr)
goto self;

if (new->hdr.type == LSA_TYPE_NETWORK)
LIST_FOREACH(iface, &nbr->area->iface_list, entry)
    if (iface->addr.s_addr == new->hdr.ls_id)

    goto self;
return (0);

First of all the newly received LSA (new) gets classified.
If the router ID is the same or if an interface address
matches the LS ID of a network-LSA the LSA is consid-
ered self originated.

Code snip 30: Remove or update
self:
if (v == NULL) {

/*
 * LSA is no longer announced, remove by premature
 * aging. The problem is that new may not be
 * altered so a copy needs to be added to the LSA
 * DB first.
 */
if ((dummy = malloc(ntohs(new->hdr.len))) == NULL)

fatal("lsa_self");
memcpy(dummy, new, ntohs(new->hdr.len));
dummy->hdr.age = htons(MAX_AGE);
/*
 * The clue is that by using the remote nbr as
 * originator the dummy LSA will be reflooded via
 * the default timeout handler.
 */
lsa_add(rde_nbr_self(nbr->area), dummy);
return (1);

}

/*
 * LSA is still originated, just reflood it. But we need to
 * create a new instance by setting the LSA sequence number
 * equal to the one of new and calling lsa_refresh().
 * Flooding will be done by the caller.
 */
v->lsa->hdr.seq_num = new->hdr.seq_num;
lsa_refresh(v);
return (1);

In case of a self originated LSA there are two cases. The
first one is that the LSA is no longer announced. In that
case the LSA gets added to the Database with a LS age
of MAX_AGE. The database code will then reflood the LSA
as soon as possible and by doing that removing it from
the database. There is no other way in doing this because
removing LSAs is a complex task that only works if the
LSA is in the database. The other case is much simpler
because there is already a self originated LSA in the
local database but the sequence number is lower then the
new one. In this case the sequence number is bumped
like in the lsa_merge() case and lsa_refresh() is
called to flood the LSA.

4.4.7 LSA check

Before even accepting a LS update the embedded LSA
has to be verified. Once again lengths are compared and
especially the ISO checksum is verified. Additionally the
LS age and sequence number are checked to be in a valid
range. Per LS type checks follow the generic ones. It is
verified that the packet has the right size for this type and
that values like the metric – which is a 24bit value stored
as 32bit integer is in the correct range. AS-external-
LSAs that are sent to stub areas get silently discarded.
At the end the LS age is checked and if it is MAX_AGE
some special care needs to be taken.

Code snip 31: MAX_AGE handling
if (lsa->hdr.age == htons(MAX_AGE) &&
    !nbr->self && lsa_find(area, lsa->hdr.type,
    lsa->hdr.ls_id, lsa->hdr.adv_rtr) == NULL &&
    !rde_nbr_loading(area)) {

/*
 * if no neighbor in state Exchange or Loading
 * ack LSA but don't add it. Needs to be a direct
 * ack.
 */
rde_imsg_compose_ospfe(IMSG_LS_ACK, nbr->peerid, 0,
    &lsa->hdr, sizeof(struct lsa_hdr));
return (0);

}

If the LS age is MAX_AGE and the LSA is not in the data-
base there is actually no need to add the LSA to the data-
base. However this is a fallacy, there are some additional
checks required. The RFC mentions that if a neighbor is
currently establishing an adjacency – state EXCHANGE
or LOADING – no short-cuts are allowed. Additionally
self originated LSA generated by the OSPF engine have
to be passed. Therefore nbr->self is tested. If all condi-
tions are met the LSA will not be added. Instead only a
direct acknowledgement is sent back.

4.4.8 Deleting LSA

Deleting something from a replicated distributed data-
base is not a trivial task. Especially if there is no LS
remove packet type. Removing is done via the LS age.
LSA with LS age MAX_AGE are ready to be removed from
the database. Especially for OpenOSPFD removing
LSAs is even more complicated. To remove a LSA it first
has to be reflooded and all neighbors have to acknowl-
edge the reception before removing it from the database.
In OpenOSPFD the database and the retransmission
logic are in two different processes so additional IPC is
needed. If the RDE tries to delete the LSA either because
it exceeds the MAX_AGE age or because of premature
aging – used to clean the database from no longer valid
LSAs – it simply sets the age to MAX_AGE and sends a
flood request to the OSPF engine. The OSPF engine will
then start the flooding procedure. The LSA is added to
the LSA cache and the different retransmission lists refer
to the cached LSA. If the last reference to the cached
object drops the following happens:

Code snip 32: lsa_cache_put()
void
lsa_cache_put(struct lsa_ref *ref, struct nbr *nbr)
{

if (--ref->refcnt > 0)
return;

if (ntohs(ref->hdr.age) >= MAX_AGE)
ospfe_imsg_compose_rde(IMSG_LS_MAXAGE,
    nbr->peerid, 0, ref->data,
    sizeof(struct lsa_hdr));

free(ref->data);
LIST_REMOVE(ref, entry);
free(ref);

}
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The LS age is compared with MAX_AGE and if true a
IMSG_LS_MAXAGE is sent back to the RDE. In the RDE
the message is received and verified. If something is
incorrect the RDE bombs out.

Code snip 33: IMSG_LS_MAXAGE handling
case IMSG_LS_MAXAGE:

nbr = rde_nbr_find(imsg.hdr.peerid);
if (nbr == NULL)

fatalx("rde_dispatch_imsg: "
    "neighbor does not exist");

if (imsg.hdr.len != IMSG_HEADER_SIZE +
    sizeof(struct lsa_hdr))

fatalx("invalid size of OE request");
memcpy(&lsa_hdr, imsg.data, sizeof(lsa_hdr));

if (rde_nbr_loading(nbr->area))
break;

v = lsa_find(nbr->area, lsa_hdr.type,
    lsa_hdr.ls_id, lsa_hdr.adv_rtr);
if (v == NULL)

db_hdr = NULL;
else

db_hdr = &v->lsa->hdr;

/*
 * only delete LSA if the one in the db isn’t newer
 */
if (lsa_newer(db_hdr, &lsa_hdr) <= 0)

lsa_del(nbr, &lsa_hdr);
break;

If there is still a neighbor in state EXCHANGE or LOAD-
ING the LSA may not be removed. It is possible that the
neighbor may request that LSA just a bit later. Now the
LSA is searched in the database and the entry of the
database is compared with the LSA that should be
removed. If the database entry is newer the entry will not
be removed else it would get finally removed from the
database and freed.

4.4.9 SPF and RIB calculation

The SPF calculation is still a large construction area. The
code should be split up as some steps are not necessary
in all cases. Especially on ABRs this is not optimal and
creates a lot of superfluous load. Worth knowing: RIB
and FIB are terms from BGP and got inherited into
OpenOSPFD. RIB is the Routing Information Base and
FIB is the Forwarding Information Base. The FIB is
mostly the kernel routing table and is stripped from
unneeded ballast whereas the RIB contains all additional
protocol specific informations.
To calculate the routing table three calculations are per-
formed. First the SPF tree gets built. Then the local
LSAs are added to the RIB and finally the AS-external-
LSAs are inserted. 

Code snip 34:  SPF calculation
/* calculate SPF tree */
do {

/* loop links */
for (i = 0; i < lsa_num_links(v); i++) {

switch (v->type) {
case LSA_TYPE_ROUTER:

rtr_link = get_rtr_link(v, i);
switch (rtr_link->type) {
case LINK_TYPE_STUB_NET:

/* skip */
continue;
case LINK_TYPE_POINTTOPOINT:
case LINK_TYPE_VIRTUAL:

/* find router LSA */
w = lsa_find(area,
    LSA_TYPE_ROUTER,
    rtr_link->id,
    rtr_link->id);
break;

case LINK_TYPE_TRANSIT_NET:
/* find network LSA */
w = lsa_find_net(area,
    rtr_link->id);
break;

default:
fatalx("spf_calc: "
    "invalid link type");

}
break;

case LSA_TYPE_NETWORK:
net_link = get_net_link(v, i);
/* find router LSA */
w = lsa_find(area, LSA_TYPE_ROUTER,
    net_link->att_rtr,
    net_link->att_rtr);
break;

default:
fatalx("spf_calc: "
    "invalid LSA type");

}

...
cand_list_add(w);

}
/* get next vertex */
v = cand_list_pop();
w = NULL;

} while (v != NULL);

The loops starts at the root vertex and moves through
one vertex after another. After a vertex is selected all
next vertices that are connected to this vertex are
extracted and added to the candidate list. After all verti-
ces are added the one with the lowest cost is popped
from the list and the loops starts over with this vertex.
Before a vertex is added to the candidate list it is verified
that the connection is still valid.

Code snip 35: the three dots in the previous snip-
pet

if (w == NULL)
continue;

if (w->lsa->hdr.age == MAX_AGE)
continue;

if (!linked(w, v))
continue;

if (v->type == LSA_TYPE_ROUTER)
d = v->cost + ntohs(rtr_link->metric);

else
d = v->cost;

if (cand_list_present(w)) {
if (d > w->cost)

continue;

if (d < w->cost) {
w->cost = d;
w->prev = v;
calc_next_hop(w, v);
/*
 * need to readd to candidate list
 * because the list is sorted
 */
TAILQ_REMOVE(&cand_list, w, cand);

}
} else if (w->cost == LS_INFINITY && d < LS_INFINITY) {

w->cost = d;
w->prev = v;
calc_next_hop(w, v);

}

On leaf nodes – w is NULL – there is nothing to do. If the
next vertex has an age of MAX_AGE it is no longer consid-
ered valid and dropped. The connection between the two
vertices has to be bidirectional and this is checked by
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linked(). The next steps calculate the cost to the new
vertex w. There is one important thing to note: only links
into a network have a cost but links from the network to
the router have no cost. The result is that modifying the
cost of an interface will often not change incoming traf-
fic flow only outgoing traffic may be rerouted due to the
change. Before adding a vertex to the candidate list it is
necessary to check if the vertex is already on the list. If it
is, then the calculated cost is compared with the current
one. The new path must be shorter than the current
selected one. In that case the cost and the prev pointer
are modified and the nexthop is recalculated. The vertex
is also removed from the candidate list and later added
back to keep the list sorted. If the vertex is not on the
candidate list then cost and prev pointer are initialised
and the nexthop is calculated. Finally the new candidate
is added to the list of candidates.
Now the RIB needs to be built. To start the area specific
routes are added. First of all, all LSAs with LS age
MAX_AGE, a cost of LS_INFINITY, or a zero nexthop
address are skipped. They are invalid. All valid network-
LSAs are added to the RIB and all router-LSAs for
ABRs and ASBRs are added as well. Summary-LSAs
are put into the RIB. On ABRs only for area 0. On non
ABRs there is no limitation. A summary-LSA is only
valid if the ABR was previously added to the RIB. The
last step is adding of the AS-external routes to the RIB.
This is done only once and not for every area. Similarly
to summary-LSAs AS-external-LSAs will do a look-up
of the ASBR router and if the router is not found the
route is considered invalid. When updating the RIB with
rt_update() some order is retained. Intra-area routes
(router and network-LSAs) have highest priority, inter-
area routers (summary-LSAs) follow and Type1 and
Type2 AS-external routes have the lowest priority. So if a
network is added multiple times that order will favour
intra-area traffic over inter-area or external routes.

4.5 Workflow

4.5.1 Flooding

The flooding and retransmission of LS updates is
entirely done in the OSPF engine. The RDE sends a
IMSG_LS_FLOOD imsg with the peer ID of the neighbor
from which the update was initially received. The OSPF
engine uses that information to flood out the LS update
to all affected networks.

Code snip 36: flooding part 1
ref = lsa_cache_add(imsg.data, l);

if (lsa_hdr.type == LSA_TYPE_EXTERNAL) {
/*
 * flood on all areas but stub areas and
 * virtual links
 */
LIST_FOREACH(area, &oeconf->area_list, entry) {
    if (area->stub)

    continue;
    LIST_FOREACH(iface, &area->iface_list,

entry) {
    noack += lsa_flood(iface, nbr,
&lsa_hdr, imsg.data, l);

    }
}

} else {
/*
 * flood on all area interfaces on
 * area 0.0.0.0 include also virtual links.
 */
area = nbr->iface->area;
LIST_FOREACH(iface, &area->iface_list, entry) {

noack += lsa_flood(iface, nbr,
    &lsa_hdr, imsg.data, l);

}
}

Before starting the flooding decision process the LS
update is added to the LSA cache. Later, if the LSA is
added to different retransmission queues, only a refer-
ence to the LSA cache is retained. Depending on the LS
type it must be flooded to all areas (AS-external-LSA) or
only to the current area (all other LSAs). lsa_flood() is
doing the per interface specific part of the flooding.
More about that a bit later.

Code snip 37: flooding part2
/* remove from ls_req_list */
le = ls_req_list_get(nbr, &lsa_hdr);
if (!(nbr->state & NBR_STA_FULL) && le != NULL) {

ls_req_list_free(nbr, le);
/*
 * XXX no need to ack requested lsa
 * the problem is that the RFC is very
 * unclear about this.
 */

noack = 1;
}

if (!noack && nbr->iface != NULL &&
    nbr->iface->self != nbr) {

if (!(nbr->iface->state & IF_STA_BACKUP) ||
    nbr->iface->dr == nbr) {

/* delayed ack */
lhp = lsa_hdr_new();
memcpy(lhp, &lsa_hdr, sizeof(*lhp));
ls_ack_list_add(nbr->iface, lhp);

}
}

lsa_cache_put(ref, nbr);
break;

After flooding the LSA out on all affected interfaces an
acknowledgement has to be sent back to the initial
sender of the LS update. In some cases there is no
requirement to send a LS acknowledge back. One of
those cases are requested LSAs – sending back a LSA
ack to an explicitly requested LSA does not make much
sense. However the RFC is not very clear about this fact.
So let's be prepared for some broken implementations
out there. The last step adds the LSA to the LS acknowl-
edge list so that a, possibly delayed, acknowledge can be
sent back. This is only done if an ack is required, the
neighbor where the ack is sent to is not ourselves and
additionally no acks were sent from the BDR to the DR.
Finally the acquired reference of the LSA gets passed
back. Reference counting makes careful programming a
necessity to avoid missing a reference change some-
where.
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lsa_flood()

As mentioned earlier lsa_flood() is used for flooding
on a per interface scope. In particular it loops over all
neighbors and decides if it has to send the update to this
neighbor or not.

Code snip 38: neighbor loop part 1
LIST_FOREACH(nbr, &iface->nbr_list, entry) {

if (nbr == iface->self)
continue;

if (!(nbr->state & NBR_STA_FLOOD))
continue;

First of all self is skipped. Then all neighbors which are
not available for flooding – their state is neither FULL
nor LOADING nor EXCHANGE – are skipped as well.

Code snip 39: neighbor loop part 2
if (iface->state & IF_STA_DROTHER && !queued)

if ((le = ls_retrans_list_get(iface->self,
    lsa_hdr)))

ls_retrans_list_free(iface->self, le);

if ((le = ls_retrans_list_get(nbr, lsa_hdr)))
ls_retrans_list_free(nbr, le);

Afterwards the retransmission lists are searched for an
older LS update for the same LSA. If an older LSA is
found it is removed and replaced later with the new one.
A special queue is used for interfaces with state
DROTHER as explained later on. Because only one
queue is used, redoing this check after the LSA got
queued once results in unexpected behaviour. So this
case is protected by the !queued check.

Code snip 40: neighbor loop part 3
if (!(nbr->state & NBR_STA_FULL) &&
    (le = ls_req_list_get(nbr, lsa_hdr)) != NULL) {

r = lsa_newer(lsa_hdr, le->le_lsa);
if (r > 0) {

/* to flood LSA is newer than requested */
ls_req_list_free(nbr, le);
/* new needs to be flooded */

} else if (r < 0) {
/* to flood LSA is older than requested */
continue;

} else {
/* LSA are equal */
ls_req_list_free(nbr, le);
continue;

}
}

If the adjacency is not yet full, the LS request list is
examined. If a LSA is found we know the exact LSA the
neighbor has in his database. So if the LSA in the request
list is older than the new one, the requested one is
removed and the new one will be flooded. Otherwise if
the LSA is older than the requested one, there is no need
to flood it to the neighbor and the request list is left alone
so that the newer LSA of that neighbor is requested later.
In case both LSAs are equal there is no need to request
the LSA anymore. There is also no need to flood the
LSA to that neighbor.
Code snip 41: neighbor loop part 4
if (nbr == originator) {

dont_ack++;
continue;

}

/* non DR or BDR router keep all lsa in one retrans list */
if (iface->state & IF_STA_DROTHER) {

if (!queued)
ls_retrans_list_add(iface->self, data);

queued = 1;
} else {

ls_retrans_list_add(nbr, data);
queued = 1;

}

If the current neighbor is the initial sender of this LS
update there is high chances that no ack has to be sent
back. This decision is done later. At least there is also no
need to flood the LS update back to this router.
Finally the LS update or actually a reference to the LS
update is added to the retransmission queue. Depending
on the interface state, different queues are chosen. If the
interface is not in state DROTHER it will be added to the
neighbor retransmission list. In case of DROTHER only
one global queue is used because all updates go to the
AllDRouters address. For this special case iface->self
is “abused”. Because only one queue is used it is impor-
tant to protect the queue from multiple adds. Currently
there is a known feature in the queuing behaviour of
OpenOSPFD that needs to be solved. In case of the
router being BDR it will queue the update to all neigh-
bors on that interface including the DR. The DR there-
fore is required to send an acknowledge to the BDR.
This will not happen and so one retransmission is done
from the BDR to the DR and the DR will then answer
with a direct acknowledge. This is unnecessary and no
updates to the DR should be queued unless they are self
originated or from a different interface.

Code snip 42: sending LS update
if (!queued)

return (0);

if (iface == originator->iface &&
    iface->self != originator) {

if (iface->dr == originator ||
    iface->bdr == originator)

return (0);
if (iface->state & IF_STA_BACKUP)

return (0);
dont_ack++;

}

/* flood LSA but first set correct destination */
switch (iface->type) {
case IF_TYPE_POINTOPOINT:

inet_aton(AllSPFRouters, &addr);
send_ls_update(iface, addr, data, len);
break;

case IF_TYPE_BROADCAST:
if (iface->state & IF_STA_DRORBDR)

inet_aton(AllSPFRouters, &addr);
else

inet_aton(AllDRouters, &addr);
send_ls_update(iface, addr, data, len);
break;

...
}

return (dont_ack == 2);
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After inspecting every neighbor and adding LSA refer-
ences to the retransmission lists an initial flooding gets
sent out. If nothing got queued there is no reason to send
the LSA, do a return. In the other cases we send the
update to the correct address. For point-to-point links it
is always AllSPFRouters. For broadcast networks it is
either AllSPFRouters or AllDRouters to multicast the
update to the correct group. All other interface types use
unicast to send the updates. Before sending out the LS
update a special check is done mostly for broadcast and
NBMA networks. In case the originator of the initial LS
update is on the now outgoing interface more checks
have to be done. First of all if the originator is DR or
BDR there is no need to send an update. The actual
flooding was already done by the DR respectively BDR.
Additionally if the router itself is BDR there is no need
to flood the network. This will be done by the DR. If
none of these two tests where true it is now clear that no
acknowledgement needs to be sent back. Therefore
dont_ack is bumped a second time and so lsa_flood()
will return true.

4.5.2 Retransmission Lists and LSA Cache

Now lets have a look at the retransmission lists. All other
lists – acknowledge, request, and database descriptor list
– are implemented in a similar way. The retransmission
list is a bit more complex because of the LSA cache. To
add a LS update to the request list
ls_retrans_list_add() is used.

Code snip 43:  ls_retrans_list_add()
if ((ref = lsa_cache_get(lsa)) == NULL)

fatalx("King Bula sez: somebody forgot to 
lsa_cache_add");

if ((le = calloc(1, sizeof(*le))) == NULL)
fatal("ls_retrans_list_add");

le->le_ref = ref;
TAILQ_INSERT_TAIL(&nbr->ls_retrans_list, le, entry);

if (!evtimer_pending(&nbr->ls_retrans_timer, NULL)) {
timerclear(&tv);
tv.tv_sec = nbr->iface->rxmt_interval;

if (evtimer_add(&nbr->ls_retrans_timer, &tv) == -1)
log_warn("ls_retrans_list_add: evtimer_add 

failed");
}

First of all a LSA cache reference is acquired via
lsa_cache_get(). If this call fails we have an internal
program error and the OSPF engine has no way to
recover from that. The reference is added to a list ele-
ment that in turn is added to the retransmission list. And
if there is no timer pending a new retransmission timer is
started.
Removing works in a similar way. First the correct entry
is searched with the help of ls_retrans_list_get()
and afterwards it gets freed if the LSA was the same.
ls_retrans_list_get() uses the known LSA triple to
identify a LSA.
Code snip 44: ls_retrans_list_free()
void
ls_retrans_list_free(struct nbr *nbr, struct lsa_entry *le)
{

TAILQ_REMOVE(&nbr->ls_retrans_list, le, entry);

lsa_cache_put(le->le_ref, nbr);
free(le);

}

ls_retrans_list_free() will not only unlink the LSA
from the request list but hands the LSA cache reference
back by calling lsa_cache_put(). Again it is important
to take care of those references.

How does this LSA cache work?
The LSA cache is nothing more than a hash list. A
simple hash is built over the LSA header and used to find
the correct hash bucket. In the LSA cache a LSA is iden-
tified not only by LS type, LS ID, and advertising router.
The sequence number and LS checksum is compared as
well. To find a LSA in the cache the internal
lsa_cache_look() function is used.
lsa_cache_get() returns a new reference to an existing
LSA.

Code snip 45: lsa_cache_get()
struct lsa_ref *
lsa_cache_get(struct lsa_hdr *lsa_hdr)
{

struct lsa_ref *ref;

ref = lsa_cache_look(lsa_hdr);
if (ref)

ref->refcnt++;

return (ref);
}

This function is very simple and the only important step
is not to forget to bump the reference count.
lsa_cache_add() works very similar to
lsa_cache_get(). Again lsa_cache_look() is used to
find already added LSAs. In that case a bump of the ref-
erence count is enough. Else a new reference object gets
allocated and filled in. There is a timestamp included to
age the LSA when it is sent out. The initial reference
count is set to one because a reference is immediately
returned to the caller.

Code snip 46: lsa_cache_add()
struct lsa_ref *
lsa_cache_add(void *data, u_int16_t len)
{

struct lsa_cache_head*head;
struct lsa_ref *ref, *old;

if ((ref = calloc(1, sizeof(*ref))) == NULL)
fatal("lsa_cache_add");

memcpy(&ref->hdr, data, sizeof(ref->hdr));

if ((old = lsa_cache_look(&ref->hdr))) {
free(ref);
old->refcnt++;
return (old);

}

if ((ref->data = malloc(len)) == NULL)
fatal("lsa_cache_add");

memcpy(ref->data, data, len);
ref->stamp = time(NULL);
ref->len = len;
ref->refcnt = 1;
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head = lsa_cache_hash(&ref->hdr);
LIST_INSERT_HEAD(head, ref, entry);
return (ref);

}

lsa_cache_put() was only roughly explained in the
MAX_AGE handling. First the reference count is decreased
and if it hits zero the cache is no longer referenced and
can be freed. Now the known MAX_AGE dance comes.
Sending back an IMSG_LS_MAXAGE if the LSA has an age
of MAX_AGE to make it possible to remove the LSA from
the LS DB. Afterwards the cache object is cleaned and
removed.

Code snip 47: lsa_cache_put()
void
lsa_cache_put(struct lsa_ref *ref, struct nbr *nbr)
{

if (--ref->refcnt > 0)
return;

if (ntohs(ref->hdr.age) >= MAX_AGE)
ospfe_imsg_compose_rde(IMSG_LS_MAXAGE,
    nbr->peerid, 0, ref->data,
    sizeof(struct lsa_hdr));

free(ref->data);
LIST_REMOVE(ref, entry);
free(ref);

}

4.5.3 Self originated LSA

There are three kinds of self originated LSAs. First
router and network-LSAs – those are generated in the
OSPF engine. Then AS-external-LSAs which are gener-
ated in the RDE with the help of the parent process.
Finally on ABRs summary-LSAs are generated – this
happens in the RDE as well.
To create a self originated LSA in the OSPF engine and
commit it to the LS DB in the RDE is a bit tricky. Let's
have a look at orig_net_lsa() because it is a lot sim-
pler than orig_rtr_lsa().

Code snip 48: originate network-LSA
if ((buf = buf_dynamic(sizeof(lsa_hdr), READ_BUF_SIZE)) ==
    NULL)

fatal("orig_net_lsa");

/* reserve space for LSA header and LSA Router header */
if (buf_reserve(buf, sizeof(lsa_hdr)) == NULL)

fatal("orig_net_lsa: buf_reserve failed");

/* LSA net mask and then all fully adjacent routers */
if (buf_add(buf, &iface->mask, sizeof(iface->mask)))

fatal("orig_net_lsa: buf_add failed");

/* fully adjacent neighbors + self */
LIST_FOREACH(nbr, &iface->nbr_list, entry)

if (nbr->state & NBR_STA_FULL) {
if (buf_add(buf, &nbr->id,
    sizeof(nbr->id)))

fatal("orig_net_lsa: "
    "buf_add failed");

num_rtr++;
}

if (num_rtr == 1) {
/*
 * non transit net therefor no need to generate
 * a net lsa
 */
buf_free(buf);
return;

}

/* LSA header */
if (iface->state & IF_STA_DR)

lsa_hdr.age = htons(DEFAULT_AGE);
else

lsa_hdr.age = htons(MAX_AGE);

lsa_hdr.opts = oeconf->options;/* XXX */
lsa_hdr.type = LSA_TYPE_NETWORK;
lsa_hdr.ls_id = iface->addr.s_addr;
lsa_hdr.adv_rtr = oeconf->rtr_id.s_addr;
lsa_hdr.seq_num = htonl(INIT_SEQ_NUM);
lsa_hdr.len = htons(buf->wpos);
lsa_hdr.ls_chksum = 0;/* updated later */
memcpy(buf_seek(buf, 0, sizeof(lsa_hdr)), &lsa_hdr,
    sizeof(lsa_hdr));

chksum = htons(iso_cksum(buf->buf, buf->wpos,
    LS_CKSUM_OFFSET));
memcpy(buf_seek(buf, LS_CKSUM_OFFSET, sizeof(chksum)),
    &chksum, sizeof(chksum));

imsg_compose(ibuf_rde, IMSG_LS_UPD, iface->self->peerid, 0,
    -1, buf->buf, buf->wpos);

buf_free(buf);

Once again the buf API is used. First space for the
header is reserved then the network mask is added and
finally a list of all fully adjacent routers is added. The
router itself needs to be added as well but this is no prob-
lem because of the special self neighbor. If there is no
other OSPF router on the network it is not necessary to
create a network-LSA. A stub network entry in the
router-LSA will do the job. In that case the buffer gets
freed and the function returns. Otherwise the LSA
header has to be built. First the correct age is set. To
remove a network-LSA the age is set to MAX_AGE else the
initial DEFAULT_AGE is used. Other important fields are
LS type, LS ID and advertising router. Also the sequence
number has to be set but the correct instance number is
only known by the RDE. The RDE uses lsa_merge()
later on to merge this LSA into the database and
lsa_merge() will take care of the sequence number – so
here we set it just to the initial value. Copy the header
into the buffer, calculate the checksum and finally send
this self originated LSA with the peerid of the special
neighbor self to the RDE.
Originating a router-LSA is done in a similar way. It is
just more complex because many additional informa-
tions are added in the router-LSA. One tricky part is set-
ting the correct router flags.

Code snip 49: originate router-LSA
/* LSA router header */
lsa_rtr.flags = 0;
/*
 * Set the E bit as soon as an as-ext lsa may be
 * redistributed, only setting it in case we redistribute
 * something is not worth the fuss.
 */
if (oeconf->redistribute_flags &&
    (oeconf->options & OSPF_OPTION_E))

lsa_rtr.flags |= OSPF_RTR_E;

border = area_border_router(oeconf);

if (border != oeconf->border) {
oeconf->border = border;
orig_rtr_lsa_all(area);

}

if (oeconf->border)
lsa_rtr.flags |= OSPF_RTR_B;

if (virtual)
lsa_rtr.flags |= OSPF_RTR_V;
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There are three bits that have to be set. The E bit indi-
cates that the router is an AS border router and will
announce AS-external routes. The E bit is used in the
SPF calculation and for summary-LSAs. In the SPF cal-
culation routers with E bit set are added to the RIB.
Without setting the E bit all AS-external routes using this
router as advertising router are considered invalid
because the router is not present in the RIB. Similar hap-
pens for summary-LSAs. On ABRs router summary-
LSAs will be generated for every router with E bit set.
OpenOSPFD tricks a bit with the E bit by setting the bit
as soon as it is possible that a AS-external route is redis-
tributed and not when the router actually redistributes a
route. Other implementations have the same sloppy
behaviour. Even more complex is setting the B bit, which
is used to mark ABRs. As soon as a router is part of two
active areas the B bit has to be set on all router-LSA.
area_border_router() returns true if there are two or
more active areas. If the state of the ABR changes all self
originated router-LSAs in all areas have to be updated.
This is done via orig_rtr_lsa_all() which in turn
calls orig_rtr_lsa() for all areas but the current one.
Afterwards setting the B bit is no longer a problem. The
last bit that can be set is the V bit. It is used to mark inter-
faces where a virtual link is terminated. Areas where one
router has a V bit set are transit areas. Transit areas need
some special handling in the SPF calculation as example
it is not allowed to send aggregated summary routing
information into a transit area.

4.5.4 ABR and summary-LSA

The code handling ABRs and summary-LSAs is still in
some flux. There are to many work a rounds and some
stuff is still missing. Lets have a look at it anyway. It
actually starts in the SPF calculation. The code that
recalculates the RIB looks currently like this:

Code snip 50: SPF timer
rt_invalidate();

LIST_FOREACH(area, &conf->area_list, entry)
spf_calc(area);

RB_FOREACH(r, rt_tree, &rt) {
LIST_FOREACH(area, &conf->area_list, entry)

rde_summary_update(r, area);

if (r->d_type != DT_NET)
continue;

if (r->invalid)
rde_send_delete_kroute(r);

else
rde_send_change_kroute(r);

}

LIST_FOREACH(area, &conf->area_list, entry)
lsa_remove_invalid_sums(area);

start_spf_holdtimer(conf);

First the RIB is invalidated by flagging routes as invalid.
While doing that old invalid routes are removed from the
tree. Afterwards the SPF calculation is run for every
area. This is one of the things that should be changed.
There is no need to recalculate an area if there was no
changes in that area. In the next step a walk over the RIB
is done. By calling rde_summary_update() for every
area and any route all required summary informations
are generated. Afterwards the kernel routing table is
updated by sending change or delete messages to the
parent process. This is only done for routes that describe
networks. After that old invalid summary-LSAs get
removed from all areas. Finally the hold timer is started.
This is specified in the RFC so that the SPF calculation
does not kill the underpowered routers.
rde_summary_update() does the decision if it necessary
to create a summary-LSA.

Code snip 51: Is summary-LSA needed?
/* first check if we actually need to announce this route 
*/
if (!(rte->d_type == DT_NET || rte->flags & OSPF_RTR_E))

return;
/* never create summaries for as-ext LSA */
if (rte->p_type == PT_TYPE1_EXT || rte->p_type == 
PT_TYPE2_EXT)

return;
/* no need for summary LSA in the originating area */
if (rte->area.s_addr == area->id.s_addr)

return;
/* TODO nexthop check, nexthop part of area -> no summary 
*/
if (rte->cost >= LS_INFINITY)

return;
/* TODO AS border router specific checks */
/* TODO inter-area network route stuff */
/* TODO intra-area stuff -- condense LSA ??? */

First of all only network routes or router routes where
the E bit is set are summarised into other areas. The E bit
is the same as the one in router-LSAs specifying that the
router is an ASBR. An ASBR has to be added to other
areas so that they can validate the AS-external-LSAs. As
AS-external routes are flooded through all areas there is
no need to create summaries for those networks. The
originating area and all invalid routes are skipped.
Finally there are some other minor but very complicated
things left out for now.

Code snip 52: update summary-LSA
/* update lsa but only if it was changed */
if (rte->d_type == DT_NET) {

type = LSA_TYPE_SUM_NETWORK;
v = lsa_find(area, type, rte->prefix.s_addr,
    rde_router_id());

} else if (rte->d_type == DT_RTR) {
type = LSA_TYPE_SUM_ROUTER;
v = lsa_find(area, type, rte->adv_rtr.s_addr,
    rde_router_id());

} else
fatalx("orig_sum_lsa: unknown route type");

lsa = orig_sum_lsa(rte, type);
lsa_merge(rde_nbr_self(area), lsa, v);

if (v == NULL) {
if (rte->d_type == DT_NET)

v = lsa_find(area, type,
    rte->prefix.s_addr, rde_router_id());

else
v = lsa_find(area, type,
    rte->adv_rtr.s_addr, rde_router_id());

}
v->cost = rte->cost;

To update the LS DB lsa_merge() is used. Before it is
possible to call lsa_merge() two things have to be done.
First the current database version of the LSA has to be
found. Secondly a new LSA is generated by
orig_sum_lsa(). After merging the LSA it is necessary
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to update the cost of the vertex so that a later call to
lsa_remove_invalid_sums() sees that this vertex is
still in use. In case the LSA was newly added the previ-
ous lsa_find() returned NULL so the search has to be
repeated to get a valid vertex.
lsa_remove_invalid_sums() does nothing more than a
tree walk looking for summary-LSAs with a cost of
LS_INFINITY and removes those by setting their age to
MAX_AGE and calling lsa_timeout() to flood them out.

4.5.5 Originating AS-external-LSA

To redistribute AS-external-LSA the parent process
sends a list of candidates to the RDE. The RDE uses
rde_asext_get() to convert the kroute into a LSA and
with the help of lsa_find() and lsa_merge() the LSA
is added to the database. Similarly on remove
rde_asext_put() is used to get the no longer needed
LSA and again lsa_find() and lsa_merge() do the
actual job.
rde_asext_put() has a more or less simple job. Find
the kroute, remove it from the list and create a LSA with
LS age MAX_AGE if the LSA was used.

Code snip 53: rde_asext_put()
LIST_FOREACH(ae, &rde_asext_list, entry)

if (kr->prefix.s_addr == ae->kr.prefix.s_addr &&
    kr->prefixlen == ae->kr.prefixlen) {

LIST_REMOVE(ae, entry);
used = ae->used;
free(ae);
if (used)

return (orig_asext_lsa(kr,
    MAX_AGE));

break;
}

return (NULL);

On the other hand rde_asext_get() has a bit more to
do. It first looks if the route was added already before. In
that case the route needs to be updated, else a new one is
created.

Code snip 54: rde_asext_get() part 1
LIST_FOREACH(ae, &rde_asext_list, entry)

if (kr->prefix.s_addr == ae->kr.prefix.s_addr &&
    kr->prefixlen == ae->kr.prefixlen)

break;

if (ae == NULL) {
if ((ae = calloc(1, sizeof(*ae))) == NULL)

fatal("rde_asext_get");
LIST_INSERT_HEAD(&rde_asext_list, ae, entry);

}

memcpy(&ae->kr, kr, sizeof(ae->kr));

wasused = ae->used;
ae->used = rde_redistribute(kr);

Next task is to find out if the route should be redistrib-
uted. The actual logic is in rde_redistribute() and so
lets have a look at that.
Code snip 55: rde_redistribute()
int
rde_redistribute(struct kroute *kr)
{

struct area*area;
struct iface*iface;
int  rv = 0;

if (!(kr->flags & F_KERNEL))
return (0);

if ((rdeconf->options & OSPF_OPTION_E) == 0)
return (0);

if ((rdeconf->redistribute_flags &
    REDISTRIBUTE_DEFAULT) &&
    (kr->prefix.s_addr == INADDR_ANY &&
    kr->prefixlen == 0))

return (1);

/* only allow 0.0.0.0/0 if REDISTRIBUTE_DEFAULT */
if (kr->prefix.s_addr == INADDR_ANY &&
    kr->prefixlen == 0)

return (0);

if ((rdeconf->redistribute_flags &
    REDISTRIBUTE_STATIC) &&
    (kr->flags & F_STATIC))

rv = 1;
if ((rdeconf->redistribute_flags &
    REDISTRIBUTE_CONNECTED) &&
    (kr->flags & F_CONNECTED))

rv = 1;

/*
 * interface is not up and running so don't
 * announce
 */
if (kif_validate(kr->ifindex) == 0)

return (0);

LIST_FOREACH(area, &rdeconf->area_list, entry)
LIST_FOREACH(iface, &area->iface_list,
    entry) {

if ((iface->addr.s_addr &
    iface->mask.s_addr) ==
    kr->prefix.s_addr &&
    iface->mask.s_addr ==
    prefixlen2mask(kr->prefixlen))

/* already announced
 * as net LSA */
rv = 0;

}

return (rv);
}

First it is checked if we have to redistribute anything.
Afterwards the default route gets handled. The default
route is only redistributed if explicitly enforced via
“redistribute default”. Dependent on the flags it is now
decided if routes gets redistributed. The interface state is
checked and finally all configured interfaces are
inspected to see if the route is not already part of a net-
work-LSA or is announced as a stub network.
After the rde_redistribute() call it is now clear what
remains to be done.

Code snip 56: rde_asext_get() part 2
if (ae->used)

/* update of seqnum is done by lsa_merge */
return (orig_asext_lsa(kr, DEFAULT_AGE));

else if (wasused)
/*
 * lsa_merge will take care of removing the
 * lsa from the db
 */
return (orig_asext_lsa(kr, MAX_AGE));

else
/* not in lsdb, superseded by a net lsa */
return (NULL);

If the route has to be redistributed a LSA with the initial
LS age is generated and returned. If it is no longer used a
LSA with LS age MAX_AGE is generated and returned.
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Otherwise the work is completed and function returns.
In case an interface state changes,
rde_update_redistribute() is called and all routes
that depend on this interface are recalculated very simi-
lar to the presented code here. Again going through
rde_redistribute(), orig_asext_lsa(), lsa_find(),
and lsa_merge().

4.6 Issues and other stuff
There are still some problems in OpenOSPFD that have
to be solved. Some features are incomplete and so there
is still a lot of work to be done. Lets look back at the
solved problems. The first problem encountered was
probably the privilege separation because a clever split-
ting had to be done. This is still sometimes an issue – for
example the current redistribute code is partially done in
the wrong place. The result is massive overhead if the
router does “redistribute static” with a full view in the
routing table. All ~170'000 routes are passed to the RDE
and evaluated there. It works but is inefficient. Other
problems with privsep were solved like the MAX_AGE or
the database exchange problems explained earlier. A
good example of a work a round is the multicast han-
dling. A real fix for this problem is in progress but some
kernel patches are required to make it fly. At least many
issues and bugs were identified and fixed in the flooding
and database exchange phase – the most important part
of the protocol.
Things that remain to be fixed include the redistribute
code or the missing support for interface aliases. The
ABR code is still not optimal and is not as good tested as
the normal case. Virtual links still need a lot of work to
get them flying – a lot of code is around but some impor-
tant bits are missing. Interface handling should be
improved, like supporting aliases and dynamic inter-
faces. Last but not least there are all those supercool new
features planned but that's a different paper. :)
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